Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification
نویسنده
چکیده
Despite the potential impact of ocean acidification on ecosystems such as coral reefs, surprisingly, there is very limited field data on the relationships between calcification and seawater carbonate chemistry. In this study, contemporaneous in situ datasets of seawater carbonate chemistry and calcification rates from the high-latitude coral reef of Bermuda over annual timescales provide a framework for investigating the present and future potential impact of rising carbon dioxide (CO2) levels and ocean acidification on coral reef ecosystems in their natural environment. A strong correlation was found between the in situ rates of calcification for the major framework building coral species Diploria labyrinthiformis and the seasonal variability of [CO 3 ] and aragonite saturation state aragonite, rather than other environmental factors such as light and temperature. These field observations provide sufficient data to hypothesize that there is a seasonal “Carbonate Chemistry Coral Reef Ecosystem Feedback” (CREF hypothesis) between the primary components of the reef ecosystem (i.e., scleractinian hard corals and macroalgae) and seawater carbonate chemistry. In early summer, strong net autotrophy from benthic components of the reef system enhance [CO 3 ] and aragonite conditions, and rates of coral calcification due to the photosynthetic uptake of CO2. In late summer, rates of coral calcification are suppressed by release of CO2 from reef metabolism during a period of strong net heterotrophy. It is likely that this seasonal CREF mechanism is present in other tropical reefs although attenuated compared to high-latitude reefs such as Bermuda. Correspondence to: N. R. Bates ([email protected]) Due to lower annual mean surface seawater [CO 3 ] and aragonite in Bermuda compared to tropical regions, we anticipate that Bermuda corals will experience seasonal periods of zero net calcification within the next decade at [CO 3 ] and aragonite thresholds of ∼184 μmoles kg−1 and 2.65. However, net autotrophy of the reef during winter and spring (as part of the CREF hypothesis) may delay the onset of zero NEC or decalcification going forward by enhancing [CO 3 ] and aragonite. The Bermuda coral reef is one of the first responders to the negative impacts of ocean acidification, and we estimate that calcification rates for D. labyrinthiformis have declined by >50% compared to pre-industrial times.
منابع مشابه
Twenty Years of Marine Carbon Cycle Observations at Devils Hole Bermuda Provide Insights into Seasonal Hypoxia, Coral Reef Calcification, and Ocean Acidification
Citation: Bates NR (2017) Twenty Years of Marine Carbon Cycle Observations at Devils Hole Bermuda Provide Insights into Seasonal Hypoxia, Coral Reef Calcification, and Ocean Acidification. Front. Mar. Sci. 4:36. doi: 10.3389/fmars.2017.00036 Twenty Years of Marine Carbon Cycle Observations at Devils Hole Bermuda Provide Insights into Seasonal Hypoxia, Coral Reef Calcification, and Ocean Acidifi...
متن کاملPast, present and future state of the carbonate system and acidification in Hengam coral reef in the Persian Gulf
Assuming the possible scenario ICCP RCP8.5, by 2100, the pH of seawater in Hengam coral reef in the Persian Gulf will decrease by 0.46 compared to 1880 (to less than 7.72). Total dissolved inorganic carbon will increase from 2006 to 2263 µmol/kg. The concentration of bicarbonate ions will increase by 24% and the carbonate ions will decrease by 51%. The saturation of calcium carbonate in seawate...
متن کاملShifts in coral reef biogeochemistry and resulting acidification linked to offshore productivity.
Oceanic uptake of anthropogenic carbon dioxide (CO2) has acidified open-ocean surface waters by 0.1 pH units since preindustrial times. Despite unequivocal evidence of ocean acidification (OA) via open-ocean measurements for the past several decades, it has yet to be documented in near-shore and coral reef environments. A lack of long-term measurements from these environments restricts our unde...
متن کاملNet Community Metabolism and Seawater Carbonate Chemistry Scale Non-intuitively with Coral Cover
Coral cover and reef health have been declining globally as reefs face local and global stressors including higher temperature and ocean acidification (OA). Ocean warming and acidification will alter rates of benthic reef metabolism (i.e., primary production, respiration, calcification, and CaCO3 dissolution), but our understanding of community and ecosystem level responses is limited in terms ...
متن کاملThe reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming
Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1-0.3 pH units and sea surface temperature to increase by 1-4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of t...
متن کامل